Exact Travelling Wave Solutions of Reaction-diffusion Models of Fractional Order∗
نویسندگان
چکیده
Abstract Reaction-diffusion models are used in different areas of chemistry problems. Also, coupled reaction-diffusion systems describing the spatiotemporal dynamics of competition models have been widely applied in many real world problems. In this paper, we consider a coupled fractional system with diffusion and competition terms in ecology, and reaction-diffusion growth model of fractional order with Allee effect describing and analyzing the spread dynamic of a single population under different dispersal and growth rates. Finding the exact solutions of such models are very helpful in the theories and numerical studies. Exact traveling wave solutions of the above reaction-diffusion models are found by means of the Q-function method. Moreover, graphic illustrations in two and three dimensional plots of some of the obtained solutions are also given to predict their behaviours.
منابع مشابه
Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملExact travelling wave solutions for some complex nonlinear partial differential equations
This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion ethod for constructing exact travelling wave solutions of nonlinear partial differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and Derivat...
متن کاملNew Exact Traveling Wave Solutions for a Class of Nonlinear PDEs of Fractional Order
In this article, the (G ′ /G)-expansion method has been implemented to find the travelling wave solutions of nonlinear evolution equations of fractional order. For this, the fractional complex transformation method has been used to convert fractional order partial differential equation to ordinary differential equation. Then, (G ′ /G)-expansion method has been implemented to celebrate the serie...
متن کاملTravelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: an Abel equation based approach.
We consider quasi-stationary (travelling wave type) solutions to a nonlinear reaction-diffusion equation with arbitrary, autonomous coefficients, describing the evolution of glioblastomas, aggressive primary brain tumors that are characterized by extensive infiltration into the brain and are highly resistant to treatment. The second order nonlinear equation describing the glioblastoma growth th...
متن کاملExact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016